SUBSTITUENT EFFECTS ON C-13 CHEMICAL SHIFT OF SIDE-CHAIN CARBON ATOM IN SUBSTITUTED BENZENES. EFFECT OF HETERO-ATOM ON TRANSMISSION MECHANISM

Naoki INAMOTO* and Shozo MASUDA

Department of Chemistry, Faculty of Science,
The University of Tokyo, Hongo, Tokyo 113

Side chain C-SCS of seventeen benzene derivatives having carbonyl group and hetero-atom in the transmission route were treated with our dual parameter equation $[\underline{a}(\iota+\underline{b}\sigma_R)]$, and the sign of the \underline{a} values was explained in terms of conjugative and 1,3-through-space interactions and electronegativity combined with hyperconjugation of methyl group.

We reported previously that substituent effect on the C-13 chemical shifts of the side-chain $\text{C}_{\alpha}\text{-atom}$ ($\text{C}_{\alpha}\text{-SCS}$) in m-substituted benzene derivatives is transmitted by 1,3-through-space (homoconjugative for $\text{sp}^2\text{-}$ and $\text{sp-C}_{\alpha}\text{-SCS}$) interaction between $\text{C}_{\alpha}\text{-}$ and- $\text{C}_{p}\text{-atoms}^1$) and that "inverse" substituent effect (i.e., higher field shift by electron-withdrawing group) on $\text{C}_{\beta}\text{-SCS}$ in p-substituted arylalkanes is also explained in terms of a similar interaction between C_- and C_{\beta}\text{-atoms.}^2)

plained in terms of a similar interaction between C - and C - atoms. 2) We also reported that C-SCS in substituted benzene derivatives are formulated as $\underline{a}(\iota + \underline{b}\sigma_R)[1]$, 3) where ι and σ_R represent inductive substituent parameter and resonance substituent constant of the second period substituent having lone pair electrons and C-C multiple bond, respectively.

This communication reports that the sign of the \underline{a} values in the above dual parameter equation[1]³⁾ is dependent on kinds of hetero-atom in the side-chain transmission route and explained mainly by conjugative and homoconjugative interactions combined with hyperconjugation. The C-SCS data of the following aromatic series were treated with the equation [1]. The results are summarized in Table.

In the presence of α -carbonyl group (systems $\underline{1}$ - $\underline{4}$), the \underline{a} values is negative, except for that in $\underline{4}$. Since the Hammett ρ values for the sp $^{\overline{3}}$ - and sp $^{\overline{2}}$ - C_{β} -SCS in m- and p-substituted α -methylstyrenes analogous to $\underline{1}$ show positive and negative signs, $\underline{2}$ respectively, and the signs of \underline{a} and ρ values are same (from comparison of the results in refs. 1 and 2 with those of ref. 3), the negative \underline{a} values in $\underline{1}$ are

System		а	Ъ	n ^b)	r ^{c)}	System		a	Ъ	n ^b	r ^{c)}
m- <u>1</u>	β	-0.23	0.78	8	0.850	m- <u>8</u>	β	-0.88	1.04	9	0.963
p- <u>1</u>	β	-0.59	1.50	11	0.948	p- <u>8</u>	β	-0.70		12	0.861
p- <u>2</u>	β	-3.92	1.48	9	0.920	m - <u>9</u>	β	0.64	1.05	6	0.911
m - <u>3</u>	β	-2.64	1.15	8	0.978	p- <u>9</u>	β	0.45	4.81	12	0.921
p- <u>3</u>	β	-4.42	1.42	8	0.924	p- <u>10</u>	β	1.53	3.11	7	0.979
p- <u>4</u>	β	1.84	1.66	9	0.984	p- <u>11</u>	β	0.13	4.15	8	0.923
	γ	-0.26	1.94	9	0.717	m - <u>12</u>	α	-0.68	1.24	10	0.727
p- <u>5</u>	β	2.69	1.78	8	0.958	p- <u>12</u>	α	-1.22	4.67	10	0.928
	Υ	-5.01	1.51	8	0.948	m- <u>13</u>	α	-1.16	0.91	6	0.837
p- <u>6</u>	β	4.86	1.57	9	0.954		β	2.55	1.36	6	0.912
	Υ	-7.47	1.59	9	0.948	p- <u>13</u>	α	-1.95	2.41	9	0.959
p- <u>7</u>	β	4.00	1.52	9	0.957		β	2.27	1.69	9	0.981

TABLE. Treatment of C-SCS with dual parameter equation [1]^{a)}

a) In this treatment, higher field shifts were taken as positive.

0.944

b) Numbers of data points. c) Correlation coefficient.

-6.44

1.52

probably attributed to a contribution of partial double bond character in the CO-Me bond because of a similar trend to the ylides ($\underline{2}$ and $\underline{3}$) where there is a large contribution of a canonical form (A).^{5,7,8})

$$Ar \cdot C \cdot CH - MPh_{3} \longrightarrow Ar \cdot C = CH - MPh_{3} \qquad (M = As, P)$$

$$\delta \cdot X \longrightarrow \delta + C$$

$$(a) \quad \delta \delta \cdot (a > 0) \qquad (b) \quad \delta \delta + (a < 0)$$

$$\delta \cdot X \longrightarrow \delta + C$$

$$CH_{3} \longrightarrow \delta + C$$

$$CH_{2} \longrightarrow \delta + C$$

$$CH_{3} \longrightarrow \delta + C$$

$$CH$$

Thus, in p-series of $\underline{1}$, a conjugation between the substituent (X) and the C_{β} -atom, by which the \underline{a} value is expected to be negative similarly to the case of p-substituted styrenes $\underline{2}$ (Fig. 1(b)), overcomes 1,3-through-space interaction between C_p - and C_{β} -atoms, by which the \underline{a} value becomes positive similarly to the cases of arylalkanes $\underline{2}$ (Fig. 1(a)). In the m-series of $\underline{1}$, similarly a homoconjugation (Fig. 1(d)) overcomes 1,3-through-space interaction followed by through-bond transmission (Fig. 1(c)).

The positive <u>a</u> value in the C_{β} -SCS of p-series of <u>4</u> is explained by a homoconjugation between both benzene rings. The series <u>5-7</u> are homoconjugation systems and thus the <u>a</u> values for C_{β} - and C_{γ} -SCS become positive and negative, respectively, analogously to C_{α} - and C_{β} -SCS of styrenes.²⁾

The systems containing α -hetero-atom (9 - 10) showed positive \underline{a} values for C_{β} -SCS, but the \underline{a} value in $\underline{8}$ was negative exceptionally. In these cases, an electron-withdrawing substituent can conjugate directly (in p-series) or through 1,3-through-space interaction (in m-series) with a hetero-atom (Y) having lone pair electrons. As the result, the attached methyl group can conjugate with the positively charged hetero-atom by hyperconjugation and the C_{β} -SCS shifts to higher field, indicating positive \underline{a} value (Fig. 2(a)). Since oxygen atom is strongly electronegative, the C_{β} -atom becomes positive corresponding to negative \underline{a} value (Fig. 2 (b)). Therefore, in the cases of $\underline{8}$ (Y=0), the latter effect is predominant. In the cases of $\underline{9}$ (Y=NMe) and $\underline{10}$ (Y=S), the hetero-atom (Y) are less electronegative. Thus the former effect is predominant and the \underline{a} values become positive. In these p-series, 1,3-through-space interaction between C_{p} - and C_{β} -atoms is considered to be not so important.

The p-series of $\underline{11}$ are analogous to arylalkanes $^2)$ because of no lone pair electrons on the electropositive silicon atom, indicating an importance of 1,3-through-space interaction between $C_{\rm D}^-$ and $C_{\rm B}^-$ atoms.

In the N-pyridinium salts ($\underline{12}$ and $\underline{13}$), the \underline{a} values for C_{β} -SCS are expected to be positive as shown in Fig. 3 and these are the case. However, for C_{α} -SCS, the actual \underline{a} values in m-series are negative and the trend is opposite to that in m-substituted toluenes. 1,3)

$$\begin{array}{c}
0, \delta \delta - (a>0) \\
\lambda - C-Ph \\
X - CH_2 \\
\delta + \delta \delta + (a<0)
\end{array}$$
Fig. 3

In the case of $\underline{12}$, it has been found that C_{α} -SCS shift to higher field because of ion pair effect as the concentration becomes higher. When X is electrondonating group, C_{α} -SCS are considered to shift to higher field by a large contribution of the following canonical structures (\underline{B} and \underline{C}) because of partial neutralization of positive charge on the nitrogen atom.

$$\dot{\bar{x}} = \underbrace{\bar{N} - c_{H_2}}_{\bar{X}} - \underbrace{\bar{N} - c_{H_2}}_{\bar{C}}$$

As the result, the \underline{a} values become more negative than those in neutral molecules. Thus, in the m-series, the \underline{a} values of C_{α} -SCS become negative.

In conclusion, our interpretation is simple and very useful for prediction of substituent effect on C-13 chemical shifts of side-chain carbon atoms in aromatic derivatives, including the previous results. 1,2,16)

REFERENCES AND NOTE

- 1) N. Inamoto, S. Masuda, K. Tori, and Y. Yoshimura, Tetrahedron Lett., 737 (1977).
- 2) N. Inamoto, S. Masuda, W. Nakanishi, and Y. Ikeda, Chem. Lett., 759 (1977).
- 3) N. Inamoto and S. Masuda, Tetrahedron Lett., 3287 (1977).
- 4) N. Inamoto, S. Masuda, K. Tori, and Y. Yoshimura, unpublished data.
- 5) P. Frøyen and D. G. Morris, Acta Chem. Scand., B30, 790 (1976).
- 6) J. Bromilow, R. T. C. Brownlee, and D. J. Craik, Aust. J. Chem., <u>30</u>, 351 (1977).
- 7) P. Frøyen and D. G. Morris, Acta Chem. Scand., <u>B30</u>, 435 (1976).
- 8) P. Frøyen and D. G. Morris, Acta Chem. Scand., B31, 256 (1977).
- 9) M. J. Shapiro, Tetrahedron, <u>33</u>, 1091 (1977).
- 10) O. Kajimoto, M. Kobayashi, and T. Fueno, Bull. Chem. Soc. Jpn., <u>46</u>, 1422 (1973).
- 11) W. F. Reynolds and R. A. McClelland, Can. J. Chem., <u>55</u>, 536 (1977).
- 12) K. S. Dhami and J. B. Stothers, Can. J. Chem., 44, 2855 (1966).
- 13) C. D. Schaeffer, Jr., J. J. Zuckerman, and C. H. Yoder, J. Organometal. Chem., 80, 29 (1974).
- 14) F. W. Wehrli, W. Giger, and W. Simon, Helv. Chim. Acta, 54, 229 (1971).
- 15) A. D. Harsch, S. Johnson, and D. Boykin, J. C. S. Chem. Commun., 119 (1977).
- Reverse sign of the <u>a</u> values in the C_{α} -SCS of $ArCH_2CH_2B\ddot{r}$, $ArCH_2CH_2\dot{S}Me_2$, $ArCH_2\ddot{F}$, $ArC\ddot{F}_3$, and p-substituted 1-aryl-2,2-dichlorocyclopropanes (C_{α} and CCl_2) may be interpreted by donation of lone pair electrons through 1,3-through-space interaction and conjugation-like interaction. The detail will be discussed in full paper.

(Received December 3, 1977)